E1701M Motion Controller

Users Manual

© 2014-2017 by HALaser Systems / OpenAPC Project Group

Table Of Contents

1 Copyright 3
2 Safety 5
3 Overview 6
3.1 Features 6

4 Position Within The System 7
5 Board And Connectors 8
5.1 Ethernet 8
5.2USB 9
5.3 Power 9
5.4 Power LED 9
5.5 User LEDs 9
5.6 Reset-Button 10
5.7 Micro-SD-Card 10
5.7.1 Firmware Update 11

5.8 Digi I/0 11
5.9 Opto-Configuration 13
5.10 Input State LEDs 14

6 Programming Interfaces 15
6.1 E1701M Binary API Functions 15
6.1.1 E1701M Binary API Error Codes 25

6.2 E1701M ASCII Commands 26
APPENDIX A - IDC connector pin numbering 34
APPENDIX B - Board dimensions 35

1 Copyright

This document is © by HALaser Systems / OpenAPC Project Group.

E1701M motion controller board, its hardware and design are copyright / trademark / legal trademark of
HALaser Systems / OpenAPC Project Group.

All other names / trademarks are copyright / trademark / legal trademark of their respective owners.

Portions of the E1701M firmware are based on IwIP 1.4.0 (or newer):

Copyright (c) 2001, 2002 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

Portions of the E1701M firmware are based on FatFS R0.10a (or newer):
FatFs module is an open source software to implement FAT file system to small embedded systems. This is a
free software and is opened for education, research and commercial developments under license policy of
following terms.
Copyright (C) 2014, ChaN, all right reserved.

e The FatFs module is a free software and there is NO WARRANTY.

e Norestriction on use. You can use, modify and redistribute it for personal, non-profit or commercial

product UNDER YOUR RESPONSIBILITY.
e Redistributions of source code must retain the above copyright notice.

Portions of the E1701M firmware are based on StarterWare 2.0 (or newer):
Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:
e Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.
e Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.
e Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2008-2010 Texas Instruments Incorporated. All rights reserved.

Software License Agreement

Texas Instruments (TI) is supplying this software for use solely and exclusively on Tl's microcontroller products.
The software is owned by Tl and/or its suppliers, and is protected under applicable copyright laws. You may not
combine this software with "viral" open-source software in order to form a larger program.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL
NOT, UNDER ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, FOR ANY REASON WHATSOEVER.

This is part of AM1808 Sitaraware USB Library and reused from revision 6288 of the Stellaris USB Library.

2 Safety

The hardware described within this document is designed to control motors. Motions caused by these motors
may effect a person's health or may otherwise cause damage. Prior to installation and operation compliance
with all relevant safety regulations including additional hardware-controlled safety measures has to be
secured. The client shall solely be responsible to strictly comply with all applicable and relevant safety
regulations regarding installation and operation of the system at any time.

The hardware described here is shipped without any cover and without prefabricated equipment for electric
installation. It is intended to be integrated into machines or other equipment. It is not for use "as is". Prior to
operation compliance with all relevant electric / electromagnetic safety regulations including additional
hardware-controlled safety measures has to be secured. The client shall solely be responsible to strictly comply
with all applicable and relevant safety regulations regarding installation and operation of the system at any
time.

This document describes the E1701M-hardware but may contain errors or may be changed without further
notice.

3 Overview

This document describes the E1701M motion controller board, its electrical characteristics and usage.

The E1701M motion controller board is designed for controlling stepper motors through up to four step and
direction signals (pulses). Alternatively it can be operated as 10-board with 8 digital inputs and 8 digital outputs
wich optionally can be operated in opto-insulated mode.

In both cases the communication between the host system and the controller board is done via Ethernet or
USB.

3.1 Features

E1701M motion controller offers following features:
e 100 Mbit Ethernet connection

USB 2.0 connection

20 microseconds cycle time and resolution

command execution time down to 1 microsecond

maximum stepper motor clock of 500 kHz, speed steps 500 kHz, 250kHz, 125kHz, 62,5 kHz, ...,

5000Hz, 4950 Hz, 4901 Hz, 4854 Hz,... 1000 Hz, 998 Hz, 996 Hz, 994 Hz, ...

support of up to four independent axes

can be operated as |0-board with 8 digital inputs an 8 digital outputs alternatively

linear, exponential and s-shaped acceleration modes

freely definable referencing modes with auto-searching for reference switch

realtime processing

512 MByte DDR3 RAM

1 GHz CPU clock

Support for Micro-SD and Micro-SDHC cards

8 digital outputs providing either CMOS logical levels or electrically insulated outputs via external

power supply for controlling 4 motors via step and direction signals

e 8freely usable digital inputs expecting either CMOS logical levels or electrically insulated inputs via
external power supply for usage as limit-/reference switches or encoder inputs

e two decoders for evaluation of axis position via quadrature encoder signal

e verysmall size of about 87 mm x 55 mm

4 Position Within The System

The E1707M motion controller system can be connected to the host system via Ethernet or USB to receive
motion commands from BeamConstruct laser marking application, from ControlRoom process control
software or from any other software using E1701M controller:

Ethernet ||

E1701M : Driver

PC

%(%

Power |

Since 100 Mbit Ethernet provides much faster data transfer than USB 2.0, this connection type is preferred.
Especially in case complex motion data with many short movements are used, Ethernet connection is more
responsive.

PC

UsB E1701M] Driver

%(Li)

Power |

In both cases the board itself has to be connected to a motor driver for each axis to submit step and direction
pulses to it.

Board And Connectors

[T) W¥EE WD

1 C— Ethernet
4w -8
33— sv

N

The E1701M motion controller board provides following connectors and interfaces:

1.
2.

N wnkw

9.

Ethernet — for communication with the host system, motion commands are submitted via this path
USB - optionally for submitting motion commands from host to E1701M card (in case Ethernet is not
used)

Power — connect with power jack 5V DC

Power LED - lights when power is available

User LEDs — show operational and error states of card

Reset-button — on-board button to restart the board completely

Micro-SD-card (on bottom side) — storage place for firmware and extended configuration file, can be
used to upgrade firmware, to change the card's IP and other things more

Digi I/O - electrically insulated digital in and outputs for transmitting step and direction signals and for
checking reference and limit switches

Opto-Configuration - choose operation mode for Digi I/Os

10. Input state LEDs — 8 LEDs showing current state of digital inputs

5.1

Ethernet

This is a standard RJ45 Ethernet plug for connection of the board with the host system. The controller board is
accessed via this connection, all motion commands and responses are sent via Ethernet. Thus it is
recommended for security reasons to have a separate 1:1 connection from the host to the motion controller
card by using a separate Ethernet port. In case this is not possible at least an own, physically separated sub-net
for all motion controller cards should be set up. This network of course should be separated from normal
network completely.

Ethernet connection is initialised during start-up, thus Ethernet cable connecting E1701M board and host
system needs to be plugged before the board is powered up.

By default the E1701M controller is using IP 192.168.2.254, thus the Ethernet port the card is connected with
needs to belong to subnet 192.168.2.0/24.

PLEASE NOTE: For security reasons it is highly recommended not to mix a standard communication network
with an E1701M network or to connect the motion controller card with a standard network. Here it may be
possible someone else in that network (accidentally) connects to that motion controller and causes movements.
The IP of the motion controller can be changed. This is necessary e.g. in case an other subnet has to be used or
in case the E1701M board has to be operated in multi-card environments where more than one motion
controller will be accessed at the same time. The IP can be configured using e1701.cfg configuration file that is
placed on Micro-SD-card. To change the IP please perform the following steps:

1.
2.
3.

disconnect E1701M board from power and USB
remove Micro-SD-card
put Micro-SD-card into a desktop computer, this may require a Micro-SD- to SD-card-adapter

A

7.
8.
9

open the drive that is assigned to the card

open file e1701.cfg using a text editor like Notepad or kwrite

add a line or edit an existing line "ip1=", here the desired IP has to be appended (as example: when you
want to configure IP 192.168.1.13 thelinehastobe "ip=192.168.1.13" - without any quotation
signs

save the file

unmount and eject the drive the card is assigned to

place Micro-SD-card in E1701M board (place without the use of force, notice correct orientation with
connectors of SD-card to bottom!)

10. power up controller
When User LEDs do not light up as described below, please check if Micro-SD-card is placed in board correctly.

5.2

USB

This is a standard Mini-USB-connector for connection of the board with the host system. It is used to optionally
send motion commands to the card. When USB is used for sending all motion commands Ethernet cable does
not need to be connected.

ﬁ PLEASE NOTE: USB 2.0 is much slower than a standard 100 Mbit Ethernet connection, so expect slower
execution and longer response times in case of complex motion data!
Required device driver is installed together with OpenAPC-setup (Windows) or comes with operating system
by default (Linux). E1701M card appears as COM-interface on Windows using any free number for the port.

With Linux it appears as /dev/ttyACMx where "x

is any number. These numbers are provided by the operating

system automatically.

By default USB provides 5V power supply too. So whenever card has to be stopped, both USB and power have
to be disconnected in order to shut it down completely.

It is not recommended to use USB as power supply only, additional, external power should be connected in
order to operate E1701M controller correctly.

5.3

Power

Power supply for E1701M motion controller board is done via power jack right beside Ethernet port. Power can
be supplied via a 2.1 mm x 5.5 mm centre connector when connected to a positive power supply rated at 5V DC
+/- 0.1V and 2.0A (smoothed, positive pole on inner contact). Do not apply voltages in excess of 5V to the DC
input. The DC power supply must be grounded.

To avoid high frequency interferences from other electrical equipment or from within the power supply, it is
recommended to place a ferrite bead at the cable close to the board. Please also check for correct shielding in
respect to the equipment the E1701M card is used within.

It is always recommended to use an external power supply. Nevertheless it may be possible a board can be
operated and powered via USB only. This depends highly on the host USB is connected to. So it is up to the user
to verify proper operation in this case.

5.4

Power LED

This LED is lit as soon as the board is on some power. This means it may be functional and could emit any signals
as soon as this LED is on, but it does not necessarily need to work properly since firmware is not started at this
point. Please refer section below for LEDs that show functional state of the board.

5.5

User LEDs

The real operational state of the card is shown by some additional LEDs described here from inner to outer
position:

1. Boot- and Alive-LED - this LED is turned on permanently as soon as the card was powered up and
the firmware boots properly. When it is not turned on after few seconds, please check if the Micro-
SD-card is placed properly and if it contains a working firmware file (for details please refer below).
After boot process has completed successfully, it starts blinking slowly. This is an alive-notification,
as long as it blinks, the board is working and ready for operation. During motion the blink
frequency may go down. Only in case it does not blink any more for more than 15 seconds, the
board has died for some reason and should be restarted.

2. Motion Active LED - this LED is turned on as long as some motion operation is running. This
includes operations that wait for a queued motion command, like a delay or like waiting for an
external signal.

3. unused - the third LED is currently unused.

4. Error-LED - this LED is turned on as soon as a fatal error occurs that normally should never
happen. When it is on, in most cases board can't continue with operation until the reason for error
isremoved and the board is restarted. In case this LED is turned on please:

- check if no other boards are plugged onto the controller

- check if you are using latest firmware and host software

- check all connections and cables

- undo your latest changes in hardware and configuration

If these steps do not help, please contact us for further assistance.

5.6 Reset-Button

When this button is pressed for at least 20 milliseconds, it restarts the card completely. A current motion
operation is stopped without any deceleration, all signals are disabled and all remaining motion commands are
dropped. After releasing this button, the firmware will start again.

5.7 Micro-SD-Card

The Micro-SD card is storage place for firmware and configuration files. Here SD and SDHC cards with storage
space of up to 32 GB are supported.
To remove the Micro-SD-card, first disconnect all power from the E1701M board completely (including USB,
Power LED has to go off). Next press Micro-SD card gently into the board until you can hear a klick-noise. Then
you can pull it out of the board. To place a Micro-SD card the same has to be done in reverse order: place it into
the E1701M boards card slot and press it gently until a noise signals locking of the card. Now the board can be
powered.
E1701M baseboard is shipped with a card containing firmware and configuration files:
e E1701.fwi - firmware file that is used to operate the board, to be replaced when a firmware update is
provided
e E1701.cfg - configuration text file, can be edited using a text editor in order to modify cards
configuration

To use an other Micro-SD card than the one shipped with the board, following conditions have to be met:
e maximum total size of 32 GB (SD or SDHC card)

10

FAT32 formatted

using only one partition

BOOT-flagis set

E17041.fwi file available on card (E1701.cfg file is optional)

The E1701.cfg configuration file can contain several parameters and its values. Both are separated by an equal-
sign. Every of the possible parameter/value pairs has to be located in an own line. Following configuration
parameters are possible:

controlled via Ethernet connection. This password corresponds
to password specified with function

E1701M set password (), please refer below for a detailed
description.

When a client computer connects to the card without sending
the correct password, Ethernet connection to this host is closed
immediately.

PLEASE NOTE: this password does not replace any network
security mechanisms and does not give the possibility to
operate E1701M controller via insecure networks or Internet!
It is transferred unencrypted and therefore can be "hacked"
easily. Intention of this password is to avoid collisions between
several E1701M cards that operate in same network and are
accessed by several software instances. Maximum allowed
length of the password is 48 characters. It is recommended to
not to use any language-specific characters.

Parameter Description Example
ipl Configures IP of Ethernet port. Here only IPs in XXX.XXX.XXX.XXX ipl=192.168.1.100
notation are allowed but no host or domain names. specifies IP 192.168.1.100 to
be used for Ethernet
interface on next startup
passwd Specifies an access password that is checked when card is passwd=myCardPwd

set a password
"myCardPwd"

5.7.1 Firmware Update

As described above the firmware is located on Micro-SD-Card and therefore can be updated easily:

1. remove the Micro-SD-Card as described above

2. download a new firmware from http://www.openapc.com/download/Firmware/ (the higher the

number in the file name, the newer the firmware is)

3. copy the contents of this ZIP-file to Micro-SD-Card (please take care about e1701.cfg in case it
contains a changed configuration)

4. reinsert Micro-SD-Card as described in previous section

5.8 Digil/O

The 20 pin connector provides 8 lines for input and 8 lines for output of digital signals that can work on CMOS
voltage level (non-insulated mode) or via opto-couplers (electrically insulated mode with external power
supply) optionally. The output lines are directly assigned to axis signals while the input lines can be used freely.
The operation mode depends on jumper settings described below. The connector is used as follows:

11

http://www.openapc.com/download/Firmware/

Upper Signal Voltage Remarks Lower Signal Voltage Remarks
Row Of Row Of
Pins Pins
1 Vext 5..24V Input voltagetobe | 2 GNDe: | GND External ground
used in opto-
insulated mode only
3 StepO 0/5Vor Step signal for axis 4 DInO 0/5V or Used for encoder
O0/Vext 0 0/Vext pulses when
5 Stepl 0/5V or Step signal for axis 6 Din1 0/5V or decoderQis
0/ Vext 1 0/Vext configured
7 Step2 0/5V or Step signal for axis 8 DIn2 0/5V or Used for encoder
O0/Vext 2 0/Vext pulses when
9 Step3/ | O/5Vor | Stepsignal for axis 10 DIn3 0/5Vor decoder 1is
Enable3 | 0/Vex: 3 or optional O0/Vext configured
enable-signal
11 Dir0 0/5Vor | Directionsignalfor | 12 Din4 0/5Vor
O/Vext axis 0 O/Vext
13 Dirl 0/5V or Direction signal for | 14 DIn5 0/5V or
O/Vext axis 1 O/Vext
15 Dir2 0/5Vor | Directionsignalfor | 16 DIné 0/5V or
O/Vext axis 2 O/Vext
17 Dir3/ 0/5Vor | Directionsignal for | 18 DIn7 0/5V or
Enable7 | O/Vex axis 3 or optional 0/Vext
enable-signal
19 V 5V Board voltage, tobe | 20 GND GND Board-internal
used only when not ground
operatingin
insulated mode

Vext and GND..: depend on opto-configuration as described below. In opto-insulated mode (opto-configuration
jumpers not set) external power supply has to be connected to these inputs. Then Step0..Step3, Dir0..Dir3,
optional Enable3, Enable7 and DIn0..DIn7 work in respect to this external power.

WARNING: When no opto-insulated mode is selected (opto-configuration jumpers are set), do NOT FEED ANY
POWER into Ve, this would cause damage to the E1701M board! In this case Ve is equal to V (5V) of the board
and GNDe is connected to boards ground GND.

Maximum current for every output is 15 mA when internally powered (non-insulated mode), here it is
recommended to use an external power supply. Maximum current for outputs Step0..Step3 is 50 mA when
externally powered (Vextin insulated mode).

Signal output lines StepO0..Step3 and Dir0..Dir3 work in open collector mode and have to be wired as follows:

V+A

Connected
Vi T Device

DOutx

E1701M

J— GND

Here “DOutx” symbolises one of the step- or direction outputs, V+ is either V (5V internal, non-insulated mode)

12

or Ve (Up to 24V external, insulated mode). GND is either GND (non-insulated mode) or GNDey: (insulated
mode). The internal resistor of the connected device is not allowed to have less than 490 Ohms in order to not
exceed the given current limits.

Step-signals emitted at StepO, Step1, Step2 and Step3 work with a base-frequency of 500 kHz. This is also the
maximum output frequency to drive a stepper motor with. Lower speeds are calculated by doing a whole-
numbered division of this base-frequency which results in possible speed steps 500 kHz, 250kHz, 125kHz, 62,5
kHz, ..., 5000Hz, 4950 Hz, 4901 Hz, 4854 Hz, ... 1000 Hz, 998 Hz, 996 Hz, 994 Hz, ...

So as smaller the output frequency is, the more speed steps are available and the closer the actual output
frequency is to the given nominal frequency. Or in other words, the higher the output speed is, the lower is the
motion accuracy: A

Accuracy

Speed

When E1701M is operated as |O-board, the different output are mapped to related binary values:

Bit Value Output
0 1 StepO
1 2 Step1l
2 4 Step2
3 8 Step3
4 16 Dir0
5 32 Dir1l
6 64 Dir2
7 128 Dir3

When DIn0/DIn1 or DIn2/DIn3 are used as encoder inputs, a 90 degree phase shifted signal is expected. For
digital input mode (standard mode which is permanently active for DIn4..DIn7 and for DIn0O/DIn1 and
DIn2/DIn3 when no encoder mode is enabled) input signals are debounced and need to stay on HIGH or LOW
level for at least 0,3 msec in order to be an valid signal.

5.9 Opto-Configuration

Using these jumpers the operation mode for Step0..Step3, Dir0..Dir3 and DIn0..DIn7 can be chosen. When they
are set, the opto-couplers are powered internally. In this mode it is not working in opto-insulated mode and all
I/Os are using TTL level signals.

When they are not set, external power and ground has to be provided at 20 pin connector (as described above)
and these digital I/Os are working in electrically insulated, opto-coupled mode.

Here always both jumpers have to be set or removed together. Setting only one of them is not allowed and may
cause damage to the E1701M motion controller.

13

5.10 Input State LEDs

Current state of digital inputs is signalised via 8 green LEDs. Every LED is assigned to exactly one digital input
signal. As long as the LED is turned on, there is a HIGH signal detected at the related input. These LEDs can be
used to check unexpected conditions manually, e.g. in case motors do not move any more because they have hit
a limit switch or to check referencing mode.

14

6 Programming Interfaces

There are two possibilities to access the E1701M motion controller out of own applications: via binary API that
makes use of native shared libraries (DLL for Windows, .so shared object for Linux) or via an ASCIl command
interface that is accessible through USB serial interface of the card.

6.1 E1701M Binary API Functions

The e1701m.dll /libe1701m.so shared library provides an own programming interface that gives the possibility
to access and control up to four axes connected to E1701M motion controller card.

The E1701M controller mainly operates functions in handshake mode, means after sending a command,
completion of it has to be waited for. This is true for motion commands. Beside of that some commands that
configure parameters like speed or acceleration can be called immediately and without waiting for a response
from card. Additionally there are some functions that can be enqueued directly after calling an other function.
Here realtime-capabilities of the controller apply, the second command is executed as soon as the previous one
is finished. Here no lag and no delays of controlling host system slow down the execution.

E1701M interface uses “increments” as base for all units and parameters and provides following functions:

unsigned char E1701M set connection(const char *address)

This function has to be called as very first. It is used to specify the IP address where the card is
accessible at (in case of Ethernet connection) or the serial interface name (in case of USB connection, “COMXx”
for Windows and “/dev/ttyACMXx” for Linux where “x” is the number of its interface). By default IP
192.168.1.254 is used.

It returns a card index number that has to be used with all following functions.

Parameters:
address - achar-array containing the IP in xxx.yyy.zzz.aaa notation or the name of the COM port to be used

Return: the board instance number or O in case of an error

void E1701M set password(const char n,const char *ethPwd)

Sets a password that is used for Ethernet connection of E1701M card. The same password should be
configured on E1701M configuration file e1701.cfg with parameter "passwd" to add an additional level of
security to an Ethernet controlled card.

PLEASE NOTE: usage of this password does NOT create enough security to control the card via networks that
are accessible by a larger audience, publicly or via Internet! Also when this password is set, the card always
should operate in secure, separate networks only!

Every card and every connection should use an own, unique password that can consist of up to 48 characters
containing numbers, lower- and uppercase letters and punctuation marks. Due to compatibility reasons no
language-specific special character should be used.

When connected via USB, this password is ignored, in this case no authentication is done.

Parameters:
ethPwd - the password to be used to authorise at a E1701M card. To reset a local password for connecting to a
card that doesn't has an Ethernet password configured, hand over an empty string "" here

void E1701M set logfile(unsigned char n, const char *path)

Using this function a path to a file can be specified where controller log data are written into. These
data are uploaded from controller during normal operation cyclically and can be used to find errors in
configuration and hardware setup.

15

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

path - full pathname to a file where the log data have to be written into, this file does not have to exist, it will
be overwritten on every new connection to controller. Write access is required on specified location for current
user. When an empty path is specified, a current log file is closed and writing of log data is disabled.

Return:E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M open_connection(unsigned char n)
Opens connection to the controller using the parameters specified during call of
E1701M set connection().
Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

void E1701M close (unsigned char n)

Closes the connection to a card and releases all related resources. After this function was called, no
more commands can be sent to the card until E1701M set connection() andE1701M open connec-
tion () are called again.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()

int E1701M set accels(unsigned char n, unsigned char axes, double accel, double
decel, double stopDecel)

Set acceleration (ramping) values for acceleration, deceleration and in case a stop-event occurs. When
one of the values is set to O, related acceleration/deceleration will not be performed and the axis is started or
stopped immediately. This may lead to rough movements or to overshoot with losing its exact position.
Acceleration and deceleration is not given in a value that is equal to a physical measurement unit but as a factor
that describes strength of acceleration and depends on used acceleration mode.

This command is sent to the card asynchronously, there is no response for it.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes these parameters have to be set, here OR-concatenated

E1701M AXIS x-flags have to be used; when referencing is running for one or more of the axes specified here,
this command is dropped for these axes

accel - acceleration of selected axes on start, this value applies when a movement begins

decel - deceleration of selected axes on end, this value applies when a movement has to stop regularly; this
deceleration is also used on referencing when reference-switch could not be found and axis stops movement
due to position-timeout

stopDecel - deceleration of selected axes in case of stop condition, this value applies when movement is
stopped by a stop-command or because a switch was hit or left; this deceleration is also used on referencing
when a reference switch is hit or left

PLEASE NOTE: setting a stop deceleration value greater than O lets the related axes continue their movement
for the time required for deceleration, means no immediate stop is performed. Depending on situation this may
result in run over limit or reference switches which may be unwanted. So deceleration value given here should
be as large as possible to have an as small as possible deceleration time and travel distance!

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

16

int E1701M set accel modes (unsigned char n, unsigned char axes, unsigned int
accelMode ,_unsIgned int decelMode , unsigned int res2)

Sets or changes acceleration and deceleration mode of axes. By default linear mode is selected, using
this function an other mode can be chosen.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()
axes - flags that specify for which axes these parameters have to be set, here OR-concatenated
E1701M AXIS x-flags have to be used; when referencing is running for one or more of the axes specified here,
this command is dropped for these axes
accelMode - acceleration mode to be set for specified axes, here one of the following values is possible:
e FE1701M ACCEL MODE LIN - linear acceleration mode, here acceleration is constant until nominal
speed is reached, this is a smooth mode where speed is reached not very fast
e E1701M ACCEL MODE EXP - exponential acceleration mode, here acceleration increases with speed
which lets the axis reach the target speed quite fast but may cause problems when acceleration is set to
0, in some situations here increments may get lost
e E1701M ACCEL MODE_ SSHAPE - very soft acceleration mode where acceleration itself increases
during beginning and decreases before target speed is reached, this mode can be used to have high
speeds with inertial masses and without losing any increments but it reaches target speed slower than
all other modes
decelMode - deceleration mode to be set for specified axes, here one of the following values can be handed
over:
e FE1701M DECEL MODE LIN -linear mode, here deceleration is constant until axis is stopped, this is a
smooth mode where stopping an axis doesn’t happens very fast
e E1701M DECEL MODE_EXP - exponential mode, here axis starts with a high deceleration value which
decreases over time and stops with a small deceleration. In this mode axis is stopped quite fast but may
cause problems at the beginning when using the high deceleration, in some situations here increments
may get lost
e E1701M DECEL MODE SSHAPE - very soft deceleration mode where deceleration itself increases
during beginning and decreases before axis is stopped, this mode can be used to stop from high speeds
with inertial masses and without losing any increments but it stops slower than all other modes
res - unused parameter, set to 0 to be compatible with future versions

Return:E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M set limits(unsigned char n,unsigned char axes,int llimit,int
hlimit,double slimit)

Set maximum movement range and speed limit for all subsequent motion commands. This command is
sent to the card asynchronously, there is no response for it.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes these parameters have to be set, here OR-concatenated

E1701M AXIS x-flags have to be used; when referencing is running for one or more of the axes specified here,
this command is dropped for these axes

1limit - lower movement limit, when a later call specifies a movement position beyond this value, this move-
ment is limited

hlimit - upper movement limit, when a later call specifies a movement position beyond this value, this move-
ment is limited

slimit - speed limit (using unit increments/second); when this value is set to 0, later calls for setting a speed
value are used with the given speed and without any limitation. In case a speed limit was specified, all used
speed values are limited to the value given here.

17

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M set speed(unsigned char n,unsigned char axes,double speed)
Set axis speed for next movement command.
This command is sent to the card asynchronously, there is no response for it.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes these parameters have to be set, here OR-concatenated

E1701M AXIS x-flags have to be used; when referencing is running for one or more of the axes specified here,
this command is dropped for these axes

speed - movement speed in unit increments/second for next motion command, this value has to be greater
than O

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M move_abs (unsigned char n, unsigned char axes, int pos)

Move axes to an absolute position.
This is asynchronous command, usingE1701M get axis state () ithasto be checked if this movement
has started and finished before any other command can be sent to the card. During an axis is running, it is only
allowed to send motion commands for other, currently not running axes, stop-commands, or any commands
that request state/position/speed data for axes.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify which axes have to be moved, here OR-concatenated E1701M AXIS x-flags have to
be set; when referencing is running for one or more of the axes specified here, this command is dropped for
these axes

pos - absolute position to move the axis to (in unit increments)

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M move_rel (unsigned char n,unsigned char axes,int pos)

Move axes by a distance relative to their current position.
This is asynchronous command, using E1701M get axis state () ithasto be checked if this movement
has started and finished before any other command can be sent to the card. During an axis is running it is only
allowed to send motion command for other, currently not running axes, stop-commands, or any commands that
request state/position/speed data for axes.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify which axes have to be moved, here OR-concatenated E1701M AXIS x-flags have to
be set; when referencing is running for one or more of the axes specified here, this command is dropped for
these axes

pos - relative position the specified axes have to be moved by (in unit increments)

Return:E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

18

int E1701M set stopcond(unsigned char n,unsigned char axes,unsigned char
stopOnEnte;,un;igned char stopOnLeave)

Defines stop-conditions for axes. This function gives the possibility to freely define inputs as limit
switches at which a movement has to stop. Here two states for inputs can be defined that are used as stop
condition: when a switch is entered (input is set to HIGH) or when a switch is left (input goes to LOW). It is
possible to use more than one input for stopping a motion. In this case at least one stopOnEnter input bit has
to be set or all stopOnLeave input bits have to be reset to fulfill a stop condition.

PLEASE NOTE: when external encoder O or 1 is configured, input bits O and 1 or 2 and 3 are not available for
checking stop condition.

When all input bits for “stop on enter” and “stop on leave” are set to 0, this function is disabled and motion
works independent from input states.

As long as a stop condition is fulfilled, no more motion is possible. In this case the stop condition specified with
this function has to be cleared by setting st opOnEnter and stopOnLeave to 0, axis has to be moved in other
direction until the switches are in a state where stop condition is no longer fulfilled and previous stop condition
values have to be restored. If movement was stopped by such a condition can be checked by calling

E1701M get axis state ().Whichinputsare high and which are low (to find out which switches caused
the stop and in which direction to move next) can be checked by calling E1701M get inputs ().

This command is sent to the card asynchronously, there is no response for it.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes the stop conditions have to be set, here OR-concatenated

E1701M AXIS x-flags have to be used; when referencing is running for one or more of the axes specified here,
this command is dropped for these axes

stopOnEnter - bit pattern specifying which input pins stop movement on HIGH-signal

stopOnLeave - a bit pattern specifying which input pins have to be LOW to stop movement

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M enable(const unsigned char n, const char enable3, const char enable7)
When the fourth axis is not used, their related step and direction outputs can be used as two freely

switchable digital outputs which can be used to enable/disable connected stepper motor drivers. With this

function this mode can be activated or the fourth axis can be reactivated by turning off the disable mode.

This function requires firmware version 28 or newer.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

enable3 - set one of the following parameters here to control the function of the digital output “Enable3”:
E1701M ENABLE_ OFF - turn off the functionality to enable/disable connected devices and use the
related outputs to drive a fourth axis; when this value is used, it has to be set for parameter enable?
too, both outputs have to be operated in same mode, mixing of functions “enable/disable” and “drive
axis” is not possible
E1701M ENABLE LOW - activate the enable-functionality and set the output “Enable3” to LOW; when
this value is set, all motion commands for the fourth axis are dropped
E1701M ENABLE HIGH - activate the enable-functionality and set the output “Enable3” to HIGH;
when this value is set, all motion commands for the fourth axis are dropped

enable7 - set one of the following parameters here to control the function of the digital output “Enable7”:
E1701M_ENABLE OFF - turn off the functionality to enable/disable connected devices and use the
related outputs to drive a fourth axis; when this value is used, it has to be set for parameter enable3
too, both outputs have to be operated in same mode, mixing of functions “enable/disable” and “drive
axis” is not possible
E1701M ENABLE LOW - activate the enable-functionality and set the output “Enable7” to LOW; when
this value is set, all motion commands for the fourth axis are dropped
E1701M ENABLE HIGH - activate the enable-functionality and set the output “Enable7” to HIGH;
when this value is set, all motion commands for the fourth axis are dropped

19

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M reference (unsigned char n, unsigned char axes, unsigned int mode,
unsigned char refSwitch, double speedStepl,double speedStep2,double
speedStep3,double speedStep4)

This function starts a reference run for specified axes. This requires one input pin to be used as switch
defining the reference position. As long as referencing is active, all other commands sent for this axis (defined
by axis flags of other functions) are ignored and dropped. Motion commands for other axes than the referenced
ones still can be sent to the controller and will be processed in parallel.

This is a synchronous command, usingE1701M get axis_state () ithasto be checked if referencing has
started and finished before any other command can be sent to the card.

Reference movements start with the standard acceleration specified with E1701M set accels () and stops
with the stop-deceleration specified withE1701M set accels ().

When a stop-condition is met during referencing by hitting a limit switch for the first time, referencing direction
is inversed to auto-search for reference switch.

When a stop-condition is met during referencing by hitting a limit switch for the second time, referencing is
canceled. This can be checked viathe E1701M AXIS STATE CONDSTOP-flagof function
E1701M get axis state().

After referencing has finished successfully, function E1701M set pos () can be called to assign a defined
position value to the current axis position.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection /()
axes - flags that specify for which axes referencing has to be started, here OR-concatenated
E1701M AXIS x-flagshave tobe used
mode - this is a bunch of OR-concatenated E1701M REFSTEP x_y-flags where x is the number of the step
and y defines the movement that has to be performed during this referencing step. x has to be continuous, ev-
ery number specified for x is allowed to exist only once. Here following flags do exist and can be combined to
specify a referencing sequence:

e E1701M REFSTEP 1 ENTER N - onfirst step move in negative direction until the reference switch is

hit

e FE1701M REFSTEP 1 ENTER P - onfirststep move in positive direction until the reference switch is
hit

e FE1701M REFSTEP 2 ENTER N -onsecond step move in negative direction until the reference
switch is hit

e E1701M REFSTEP 2 ENTER P -onsecond step move in positive direction until the reference switch
is hit

e E1701M REFSTEP 2 LEAVE N -onsecond step move in negative direction until the reference
switch is left

e E1701M REFSTEP 2 LEAVE_ P -onsecond step move in positive direction until the reference switch
is left

e FE1701M REFSTEP 3 LEAVE N - onthird step move in negative direction until the reference switch
is left

e E1701M REFSTEP 3 LEAVE P -onthirdstep move in positive direction until the reference switch is
left

e E1701M REFSTEP 3 ENTER N -onthird step move in negative direction until the reference switch
is hit

e FE1701M REFSTEP 3 ENTER P -onthirdstep move in positive direction until the reference switch is
hit

e FE1701M REFSTEP 4 ENTER N -onfourthstep move in negative direction until the reference switch
is hit

e E1701M REFSTEP 4 ENTER P -on fourthstep move in positive direction until the reference switch
is hit

20

e E1701M REFSTEP 4 LEAVE N -on fourth step move in negative direction until the reference switch
is left
e E1701M REFSTEP 4 LEAVE P - onfourthstep move in positive direction until the reference switch
is left
e FE1701M REFSTEP INV SWITCH - thisis aspecial flag which has influence on the logic of the input
switch; when set, its behaviour is inverted, means reaction on hit/leave as described above changes;
this option requires firmware version 23 or newer
Some examples for useful combinations:
e E1701M REFSTEP 1 ENTER N|E1701M REFSTEP 2 LEAVE P|
E1701M REFSTEP 3 ENTER N|E1701M REFSTEP 4 LEAVE P - thisisfor very accurate refer-
encing and requires related speed values becoming slower for every step. Here axis moves in negative
direction until reference switch is hit, next it moves in positive direction until it is left. This is repeated,
next it again moves in negative direction until reference switch is hit, during last step it moves in posi-
tive direction until it is left again. As lower the speed for step 4 is, as more exact the referenced position
will be.
e E1701M REFSTEP 1 ENTER P|E1701M REFSTEP 2 ENTER N|E1701M REFSTEP 3 LEAVE N
- this is a special sequence that assumes the reference switch may be hit but traversed in first step be-
cause speed is too high or stop-deceleration too slow to fully stop the axis while the switch is held. So
after traveling in positive direction until the switch is hit, the axes move back in negative direction until
the switch is hit again. Next movement in negative direction is continued until the switch is left. Here
optionally a fourthstepE1701M REFSTEP_4 ENTER_P could be added to hit the reference switch
again
refSwitch - bit pattern defining at least one input pin that is used as reference input. In theory it is possible
to define more than one input bit for more than one reference switch here. In this case referencing would act on
the first reference switch found during motion. In practice multiple-reference-switch-feature should be useful
in very few, exotic cases only.
PLEASE NOTE: when external encoder O or 1 is configured, input bits O and 1 or 2 and 3 are not available for us-
Aage as reference switch input.
speedStepl - speed to be used during first referencing step. When a speed value <=0 is set here although a
E1701M REFSTEP 1 -flagis set, referencing will not be done
speedStep2 - speed to be used during second referencing step. When a speed value <=0 is set here although
aE1701M REFSTEP 2 -flagis set, referencing will be finished after step 1
speedStep3 - movement speed to be used during third referencing step. When a speed value <=0 is set here
althoughaE1701M REFSTEP_ 3 -flagis set, referencing will be finished after step 2
speedStep4 - movement speed to be used during fourth referencing step. When a speed value <=0 is set here
althoughaE1701M REFSTEP 4 -flagis set, this last step will not be done

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M set pos(unsigned char n, unsigned char axes,int pos)

Sets a specific position for defined axes. This function does not cause any movements but changes the
current position value of the axis. When an axis makes use of the encoder input, the encoder counter is set to a
value that corresponds to this position, for all other axes the internal position counter is set to the given value.
This command is sent to the card asynchronously, its success can be tested by checking
E1701M AXIS STATE SETPOS flagreturnedbyE1701M get axis state()

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes the positions have to be set, here OR-concatenated E1701M AXIS x-
flags have to be used; when referencing is running for one or more of the axes specified here, this command is
dropped for these axes

pos - new position value for the axes specified by flags in parameter axes (using unit increments)

Return: E1701M OK in case function could be completed successfully oran E1701M ERROR_-code otherwise

21

A

int E1701M set trigger_ point(unsigned char n,unsigned char axes,unsigned int
input)

Waits with execution of all following commands until specified input lines go to HIGH. When the input
is already on HIGH value, command execution is continued latest after 1 microseconds (assumed the next com-
mand is already sent and therefore waiting for execution). This is a queue command, it can be sent asyn-
chronously followed by an other command that is executed immediately after the specified input was switched.
Also when no movement is active while waiting for the input, this command sets movement-state.

Waiting for an external signal can be cancelled by calling E1701M stop () which also removes all other, en-
queued commands. Alternatively E1701M release trigger point () can be called which s similar to re-
ception of an external trigger, it continues execution with next enqueued command.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection /()

axes - flags that specify for which axes a trigger point has to be set, here OR-concatenated E1701M AXIS x-
flags have to be used; when referencing is running for one or more of the axes specified here, this command is
dropped for these axes

input - bit pattern that has to be set at digital inputs, when more than one bit is specified here, all the inputs
have to go to HIGH in order to continue operation (AND-concatenation).

PLEASE NOTE: when external encoder O or 1 is configured, input bits 0 and 1 or 2 and 3 are not available for us-
age as external trigger input.

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M release trigger point(unsigned char n,unsigned char axes)

This command is some kind of software trigger event. When execution is stopped by a command
E17101M set trigger point () itcanbe continued without an external signal just by calling this function
for a specified axis. Calling this function when not waiting for an external trigger does not have any effect, any
latercalltoE17101M set trigger point () will override and reset the information given here.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes these external trigger has to be released, here OR-concatenated
E1701M AXIS x-flags have to be used; when referencing is running for one or more of the axes specified here,
this command is dropped for these axes

Return: E1701M OK in case function could be completed successfully oran E1701M ERROR_-code otherwise

int E1701M set sync_point(unsigned char n,unsigned char axes)

Waits with execution of all following commands until commands of all axes that got the same
syncronisation are waiting at this point. So this function can be used to synchronise command queues between
axes, it ensures all commands following after this one are executed (nearly) immediately. This is useful e.g. for
synchronising motion commands where all axes have to work in parallel. After all specified axes have arrived at
this command, a next command that was issued directly after this is executed within 1 microsecond. This time is
valid only for execution of commands within the same queue, delay between commands of different
queues/axes synchronised by this function is several magnitudes shorter.

This is a queue command, it can be sent asynchronously followed by an other command that is executed
immediately after all specified axis command queues have arrived at this synchronisation point. When no
movement is active while waiting for synchronisation between axes, this command sets movement-state.
Waiting for synchronisation can be canceled by calling E1701M stop ().

22

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify which axes have to wait for synchronisation. Here a bit pattern containing flags for at
least two axes has to be set, elsewhere the command does nothing.

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

int E1701M delay(unsigned char n, unsigned char axes, double delay)

Waits with execution of all following commands for a given time. This is a queue command, it can be
sent asynchronously followed by an other command that is executed immediately after the specified time has
elapsed. Also when no movement is active while waiting for the input, this command sets movement-state.
Waiting for the delay to elapse can be cancelled by calling E1701M stop (), which also drops all other,
enqueued commands.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify for which axes a delay has to be done, here OR-concatenated E1701M AXIS x-flags
have to be used; when referencing is running for one or more of the axes specified here, this command is
dropped for these axes

delay - time to wait until marking continues in unit seconds, smallest possible value is 1 microsecond

Return: E1701M_OK in case function could be completed successfully oran E1701M_ERROR_-code otherwise

int E1701M set enc(unsigned char n, char axis, unsigned char encoder, double
resolutionT -

Enables or disables quadrature decoder input for a specific axis. A maximum of two encoders can be
used and only one axis can make use of the same encoder, so whenever an other axis is chosen, the previously
used axis is no longer able to make use of this encoder.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection /()

axis - 0-based axis number (but not flag!) of the axis the decoder has to be used for; when -1 is given here, the
quadrature encoder input is disabled and related digital inputs be used as reference or limit switch inputs
encoder - the number of the decoder to be used, for decoder O digital inputs O and 1 are used and can't work
as limit or reference switches any longer, for encoder 1 digital inputs 2 and 3 are used and can't work as limit or
reference switches any longer

resolution - factor between encoder pulses and the related number of increments, here a value has to be
given in unit pulses per increment that specifies, how much increments the stepper motor has done when one
set of encoder pulses (two 90 degree phase shifted, single pulses) was detected at encoder inputs

Return: E1701M OK in case function could be completed successfully oran E1701M ERROR_-code otherwise

int E1701M stop(unsigned char n, unsigned char axes)

Stops movement of a running axis and drops all possibly enqueued commands.
This is a synchronous command, no other functions canbe used untilE1701M get axis_ state () signals
the axis has stopped successfully.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()

axes - flags that specify which axes have to be stopped and queued commands for which axes have to be
dropped, here OR-concatenated E1701M AXIS x-flags have to be used

23

Return: E1701M OK in case function could be completed successfullyoran E1701M ERROR_-code otherwise

unsigned int E1701M get axis state(unsigned char n, unsigned char axis)

Returns movement flags that tell state of an axis since last call of this function. To find out if movement
is still in progress for a specific axis, this function has to be called again and the same flag has to be checked.
PLEASE NOTE: this function has always to be used together with all movement functions to implement a
handshake:

1. start movement

2. checkif movement has started

3. checkif movement has finished.
Only after such a sequence next movement is allowed to be started. Same is true for referencing, here sequence
is

1. startreferencing

2. wait until referencing state flag is set

3. wait until referencing movement has finished.
Due to asynchronous data transmission to and from motion controller this function just fetches state data from
a queue which is synchronous to the movement functions called. Wwhen E1701M get axis state () isNOT
used accidentally but motion commands are sent repeatedly, this internal state-queue may overrun resulting in
an undefined behavior of the whole API.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()
axis - 0-based axis number (but not flag!) of the axis the state has to be checked for

Return: a list of OR-concatenated flags specifying the state of the given axis, here following values are possible:

e E1701M AXIS STATE MOVING - axisis moving

e E1701M AXIS STATE REFERENCING - axis is referencing; in some cases this flag may be set while
E1701M AXIS STATE MOVING isnot set, this happens when referencing is still in progress but axis
stopped for a short time

e EI1701M AXIS STATE CONDSTOP - axis was stopped because a stop condition specified by
E1701M set stopcond () was fulfilled

e E1701M AXIS STATE SETPOS -anew position value was set to current axis position successfully

double E1701M get axis_speed(unsigned char n, unsigned char axis)

Return movement speed of one specific axis (in unit increments per second). When speed value is 0, the
axis is not moving. Since this method is not very accurate due to a lag caused by data transfer to and from
controller, for exact motion detection always function E1701M get axis state () hastobeused.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()
axis - 0-based axis number (but not flag!) of the axis the current speed has to be evaluated for

Return: speed of the specified axis

int E1701M get axis_pos(unsigned char n, unsigned char axis)

Return position of one specific axis (in unit increment). When no encoder is used and configured for this
axis, the returned value is the assumed position it should have after all preceding operations, but it does not
necessarily need to be equal to the real position. Especially in cases where steps have been dropped due to
overload or motor has continued movement due to overshooting, the assumed and the actual position can be
quite different. When an encoder is used and configured for the specified axis, the returned value is equal to the

24

position counted by the encoder. Here only possible deviation in accuracy is caused by rounding errors when
calculation real incremental position out of the encoder position. This deviation depends on encoder’s resolu-
tion and should be very small.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()
axis - 0-based axis number (but not flag!) of the axis the current position has to be evaluated for

Return: current position of the specified axis

unsigned int E1701M get inputs(unsigned char n)

Returns current state of digital inputs. When quadrature decoder O or 1 are used, the state of input bits
0 and 1 or 2 and 3 are undefined; they do not reflect the current decoder input state but any preceding input
value. This function is executed asynchronously and returns immediately with the last known input state.

Parameters:
n - the 1-based board instance number as returned by E1701M set connection ()

Return: bit pattern of current digital input

int E1701M_set_outputs(const unsigned char n, const unsigned int flags, const unsigned
int value, const unsigned int mask)

This function is intended to be used in |O-mode only where E1701M is used as plain 10-board. It can be
used to set the 8 bit digital outputs directly.
Parameters:
n - the 1-based board instance number as returned by E1 701D _set connection ()
flags - unused, set to O for compatibility with future software versions
mask - specifies which of the bitsin "value" have to be used for setting and clearing output data, only these
bits that are set to 1 in mask are changed according to the given value
value - the 8 bit value to be set at digital out port

Return:E1701M OKoranE1701M ERROR_return codein case of anerror

void E1701M get version(unsigned char n, unsigned short *hwVersion, unsigned
short *fwVersion)

Get the hardware and software version of the used board.
This is not a handshake command, it is executed immediately and independent from all other commands.

Parameters:

n - the 1-based board instance number as returned by E1701M set connection ()
hwVersion - the hardware revision/version number

fwVersion - the revision/version number of the firmware running on the board

6.1.1 E1701MBinary API Error Codes

Functions described above in most cases return a generic error code or E1701M_OK in case the operation
could be completed successfully. In case of an error one of the following codes is returned:

e FEI1701M ERROR INVALID CARD -awrongorillegal card number was specified for function parame-

“«_»

tern

25

e E1701M ERROR NO CONNECTION - host could not connect to card either because of a network error
(Ethernet connection) or because of some USB connection problems

e E1701M ERROR NO MEMORY - there is not enough memory available on host system

e FE1701M ERROR UNKNOWN FW -the board is running with an unknown or incompatible firmware; for
firmware updates please refer above

e EI1701M ERROR TRANSMISSION - datatransmission from host to card failed possibly because of
connection problems

e E1701M ERROR_FILEOPEN - opening of afile failed

e E1701M ERROR FILEWRITE - writing of datainto an already opened file failed

e E1701M ERROR INVALID DATA - afunction was called with invalid data or by using an operation
mode where this function is not used/allowed

e FE1701M ERROR UNKNOWN BOARD - trying to access a controller board that is not a motion controller

e E1701M ERROR - another, unspecified error happened

6.2 E1701M ASCII Commands

The ASCII-commands can be sent via serial interface (in case USB connection is used). An appropriate client has
to connect to the serial port (COMx for Windows and /dev/ttyACMx for Linux where “x” is a number
identifying the specific serial interface). As soon as the connection is established, commands can be sent to the

card. All commands come with following structure:

cxxxx[a] [parameter (s)]
The commands always start with character “c”. Next four characters identify the command itself. In most cases
it is followed by a number in range 0..3 specifying the axis this command is valid for. Depending on the command
one or more optional or mandatory parameters may follow. Some commands that are not specific to an axis do

“«_n

not make use of the axis number “a” and therefore consist of 5 characters only.

Following commands are supported:

camoda mode
Set mode for acceleration. Here a is an required parameter specifying the axis (in range 0..3) the mode
has to be set for. Acceleration mode to be used is specified by parameter mode, here one of following values is
possible:
e 1 -linear acceleration mode, acceleration is constant until nominal speed is reached, this is a smooth
mode where speed is reached not very fast
e 2 - exponential acceleration mode, here acceleration increases with speed which lets the axis reach the
target speed quite fast but may cause problems when acceleration is set to O at end of acceleration
phase, in some situations increments may get lost at this point
e 3 -verysoft s-shaped acceleration mode where acceleration itself increases during beginning and
decreases before target speed is reached, this mode can be used to have high speeds with inertial
masses and without losing any increments but it reaches target speed slower than all other modes

Example: camod3 1 - set linear acceleration mode for axis 3

caccea [acceleration]

Set or show acceleration strength factor for an axis that is applied whenever a movement starts.
a is an required parameter and specifies the axis in range 0..3 this command is valid for. When called with no
parameter, this command returns the current acceleration in unit “strength factor * 1000”. When a positive
parameter value is specified, this value is set as new acceleration and used for all further movements. Setting an
acceleration value of O disables this function completely, all movements will start without any ramping in this
case.

Example: cacce0 2500 - sets an acceleration of 2.5 for axis O

26

cdmoda mode
Set mode for deceleration. Here a is an required parameter specifying the axis (in range 0..3) the mode
has to be set for. Deceleration mode to be used is specified by parameter mode, one of following values is
possible:
e 1 -linear deceleration mode, here deceleration is constant until axis is fully stopped, this is a smooth
mode where axes aren’t stopped very fast
e 2 -exponential deceleration mode, here axis starts with a high deceleration value which decreases
over time and lets the axis stop quite fast but may cause problems when deceleration is started, in
some situations here increments may get lost at the beginning of deceleration
e 3 -very soft s-shaped deceleration mode where deceleration itself increases during beginning and
decreases before axis is stopped fully, this mode can be used to stop from high speeds with inertial
masses and without losing any increments but it stops speed slower than all other modes

Example: cdmod3 1 - set linear deceleration mode for axis 3

cdecea [deceleration]

Set or show deceleration strength factor for an axis that is applied whenever a movement stops
regularly.
a is an required parameter and specifies the axis in range 0..3 this command is valid for. When called with no
parameter, this command returns the current deceleration in unit “strength factor * 1000”. When a positive
parameter value is specified, this value is set as new deceleration and used for all further movements. Setting a
deceleration value of O disables this function completely, all movements will stop without any ramping in this
case.

Example: cdecel - prints the current acceleration value for axis 1

csdeca [stopdeceleration]

Set or show deceleration strength factor for an axis that is applied whenever a movement stops due to
an unpredictable event like a stop-command or like hitting a reference or limit switch.
a is an required parameter and specifies the axis in range 0..3 this command is valid for. When called with no
parameter this command returns the current deceleration in unit “strength factor * 1000”. When a positive
parameter value is specified, this value is set as new deceleration and used for all further operations. Setting a
deceleration value of O disables this function completely, related movements will stop without any rampingin
this case.

Example: csdec2 75000 - sets a new stop-acceleration of 75.0 for axis 2

cllima [lowlimit]

Set or show current lower limit the axis “a” is allowed to drive to (in unit increments). When a motion
command is given that would move axis beyond this point, movement stops at position specified by
“lowlimit” using current deceleration value.

Example: c11im3 - show current lower limit position of axis 3

chlima [highlimit]
Set or show current upper limit the axis “a” is allowed to drive to (in unit increments). When a motion

27

command is given that would move axis beyond this point, movement stops at position specified by
“highlimit” using current deceleration value.

Example: ch1im0 50000 - set the upper limit of axis 3 to 50000 increments

cslima [speedlimit]

Set or show current speed limit for axis “a” (in unit increments per second * 1000). When a motion
speed is set that is higher than the value given here, it will be limited to the speed specified by “speedlimit”.
Setting this speed limit also influences the current motion speed specified by command cmspd, it will be limited
too so that speed limitation applies to all following movements without sending cmspd again.

Example: cs1iml 1500000 - set aspeed limit of1500 increments per second

cmspda [motionspeed]

Set or show speed used for movements at axis “a” (in unit increments per second * 1000). The value
given here will be used for all following movement commands until it is replaced by an other motion speed value
set with this command. When a speed is higher than the speed limit defined by a preceding call of cs1im,itis
limited to that maximum speed.

Example: cmspd?2 - show motion speed value used for movements

ccspda
Show current speed axis “a” is moving with (in unit increments per second * 1000). If the specified axis
is not moving, returned speed is O.

Example: ccspd3 - show speed axis 3 is currently moving with

ccposa

Show current position of axis with number “a” (in unit increments). When no encoder is used for this
axis the assumed position is returned. This position is generated out of all preceding the movements and is the
nominal position the axis should have after these operations. This position may differ from the real position of
the hardware in case steps have been generated but motor could not move due to overload or in case motor
overshoots at end of movements. When an encoder is used, this command returns the position generated out of
the encoder data. This is the more exact value since it takes all deviations caused by mechanics into account.
This command can be used during a motion is in progress to check position changes.

Example: ccpos1 - show current position of axis 1

cstcda [stoponenter stoponleave]

Shows the current stop condition bits or sets new condition and input bits to be used as condition to
stop the given axis “a”. This command can be used to configure inputs to be used as limit switches where motion
has to stop. Both parameters expect a bit pattern specifying the inputs to be used. When bits are set, motion
will stop when at least one of the input bits specified with “stoponenter”is set to high (switch is hit) or when
all input bits specified with “stoponleave” are going low (switches are left). When both are set to O this
functionis disabled.

When motion has been stopped by such a condition, the related axis is no longer able to move since the
condition is still valid. Thus first the condition has to be removed, next the axis has to be moved in opposite

28

direction far enough to not to fulfil the stop condition any longer. If an axis has been stopped by such a
condition can be checked by using command “cstst”. The state of the inputs can be evaluated using command
“cginp”

When decoder O or 1isused, inputs O and 1 or 2 and 3 are not available for usage.

Example: cstcd2 - show the input bits currently used at axis 2 for stop condition, when“0 0” is returned, this
functionis disabled

Example: cstcnd3 48 0 - sets the twoinputs 4 (=16) and 5 (=32) to be used as limit switches for axis 3,
motion will stop as soon as one of these inputs is set to high

Example: cstcnd0 0 3 -setsthe two inputs O (=1) and 1 (=2) to be used as limit switches for axis 0, motion
will stop as soon as both inputs are going to low

cststa

Checks if a stop condition is active for the given axis “a”. As soon as a stop-condition was fulfilled that
caused an axis to stop, an internal flag is set. Calling this function the related flag can be checked. When it
returns 1, the last movement was stopped by an external condition, in case of O motion was not stopped by it.
Executing this command resets the flag, so all further calls would return a O until a new movement is performed
that fulfils this condition again. Starting a new movement also resets this flag, so executing this command
should be done once after a motion is stopped and current axis speed is O.

Example: cstst0 - returns 1 when stop condition was fulfilled during last movement on axis O

cmabsa [position]

Move axis “a” to the specified “position” (using unit increments). This command uses speed,
acceleration and deceleration values set with cmspd, cacce and cdece.

Example: cmabs3 3000 - move axis 3 to absolute position of 3000

cmrela [distance]
«“ n

Move axis “a” and change its current position by given “distance” (using unit increments). This
command uses speed, acceleration and deceleration values set with cmspd, cacce and cdece.

Example: cmrel0 -2000 - move axis 2, change its position by 2000 increments in negative direction

cstopa
Stops movement on given axis “a” and drops all other possibly enqueued commands. Stopping a
movement will be done using the stop-deceleration specified with command “csdec”.

Example: cstopl - stops axis 1

csposa position

This command does not cause any movement but resets the internal position counter to the new value
specified by “position”. This command is useful together with “cmre £” to specify the current, defined
position after referencing has been done.

Example: cspos2 0 - sets the current position of axis 2 to value O

29

cstrga inputbits
This is a queue command that stops execution of all other, following motion commands until the inputs

specified by “inputbits” are set. After the given input bits have been recognised, a next command that was
issued directly after sending “cstrg” is executed within 1 microsecond.
When this command was sent, execution of all following commands is held until:

e cstopiscalled for same axis - all following commands for this axis are dropped

e correct external trigger signal is detected - next command is executed

e crtrgiscalled for same axis - next command is executed

PLEASE NOTE: when quadrature decoder O or 1is used, digital inputs O and 1 or 2 and 3 are not accessible this
way and should not be used as external trigger signal.

Example:

cstrg3 8

cmabs3 10000

This sequence stops execution of all commands for axis 3 until digital input 3 (=8) is set to high. As soon as this
happens, axis 3 moves to position 10000. Commands that would have been sent for other axes than this would
have been executed without any influence by “cstrg3”.

crtrga
Using this command a “wait for trigger”-sequence can be interrupted and execution of commands is
continued.

Example: crtrg0 - atrigger command at axis O is released, all commands that have been sent after preceding
“cstrg0” are executed

csynca axisflags
This is a queue command that stops execution of all other, following motion commands for the specified

axes until all axes switched to synchronisation mode have reached this point. So this can be used to synchronise
command queues between axes, it ensures all commands following after this one are executed (nearly)
immediately. This is useful for synchronising motion commands where all axes have to work in parallel. This
command has to be sent for all axes that need synchronisation.
Parameter axisflags is a bit pattern that specifies which axes have to wait for each other, this is a number
consisting of following OR-concatenated values:
1-axisO
2-axis1
4 - axis 2
8 - axis 3
After all specified axes have arrived at this command, a next command that was issued directly after sending
csync is executed within 1 microsecond. This time is valid only for execution of commands within the same
queue, delay between commands of different queues/axes synchronised by this function is several magnitudes
shorter.
When this command was sent, execution of all following commands is held until:

+ cstopis called for these axes

« all specified axes arrive at this synchronisation point
Example:
csync2 12
cmabs2 10000
csync3 12
cmabs3 5000
This command sequence ensures axis 2 and 3 stop until command queue of both axes have arrived at the
synchronisation point. After that both axes start movement (nearly) at the same time. "cmabs2 10000"is not

30

executed before "csync3 12" isemitted, so it starts immediately with this command and together with the
following "cmabs3 5000"

csdlya delay
Stop execution at axis “a” for the given time. Here “de1ay” specifies the time (in unit microseconds)
execution of next queued command has to wait. Such a delay can be cancelled by calling “cstop”.

Example:

cmabsl 1000

csdlyl 1500000

cmabsl 2000

This sequence lets axis 1 move to position 1000, after arrival it waits for 1.5 seconds and continues movement
to position 2000.

cmrefa mode refswitch speedl speed2 speed3 speed4
This command performs referencing at axis “a”. Here up to four referencing steps can be defined using

“mode”. All these steps are done in relation to the input bit of the reference switch specified by “refswitch”.
Every step can be done with a different referencing speed (“speedl”.”speed4”).
Parameter “mode” is a combination of numbers which are equal tothe E1701M REFSTEP x vy flags described
above. Here every step is equal to a number, to combine different movements of these steps, the numbers have
to be added. Every step is allowed to exist only once. When there is a gap in steps (e.g. step 1,2 and 4 defined)
referencing ends before that gap and all following steps are dropped. When a given speed value is O,
referencing ends before this step. Following numbers are available to get a referencing sequence for parameter
“mode”:
For first step one of following numbers can be used:

e 1 -onfirst step move in negative direction until the reference switch is hit

e 2 -onfirst step move in positive direction until the reference switch is hit
One of following numbers can be added for step 2:

e 4 -onsecond step move in negative direction until the reference switch is hit

e 8 -onsecond step move in positive direction until the reference switch is hit

e 16 - onsecond step move in negative direction until the reference switch is left

e 32 -onsecond step move in positive direction until the reference switch is left

One of following numbers can be added for step 3:

e 64 - onthird step move in negative direction until the reference switch is left

e 128 - onthird step move in positive direction until the reference switch is left

e 256 - onthird step move in negative direction until the reference switch is hit

e 512 -onthird step move in positive direction until the reference switch is hit

One of following numbers can be added for step 4:

e 1024 - on fourth step move in negative direction until the reference switch is hit

e 2048 - onfourth step move in positive direction until the reference switch is hit

e 4096 - on fourth step move in negative direction until the reference switch is left

e 8192-onfourth step move in positive direction until the reference switch is left

Some examples for useful combinations of parameter “mode”:

e 8481 (=1+32+256+2048) - this is for very accurate referencing and requires related speed values be-
coming slower for every step. Here axis moves in negative direction until reference switch is hit, next it
moves in positive direction until it is left. This is repeated, next it again moves in negative direction until
reference switch is hit, during last step it moves in positive direction until it is left again. As lower the
speed for step 4 is, as more exact the referenced position will be.

e 70 (=2+4+64) - thisis a special sequence that assumes the reference switch may be hit but traversed in
first step because speed is too high or stop-deceleration too slow to fully stop the axis while the switch
is held. So after traveling in positive direction until the switch is hit, the axes move back in negative di-
rection until the switch is hit again. Next movement in negative direction is continued until the switch is
left. Here optionally a fourth step 2048 could be added to hit the reference switch again

31

A

Second parameter “refswitch”is a bit pattern specifying the input that has to be watched during referencing.
PLEASE NOTE: when decoder O or 1 is used, digital inputs O and 1 or 2 and 3 are not accessible this way and
can't be used as reference switch inputs.

Example: cmref2 2 4 100000 0 0 O - performs asimple referencing where axis moves in positive
direction until digital input bit 2 goes to high. Referencing is done with a speed of 100.0 increments per second.
Since whole referencing sequence consists of one step only, speed values for step 2to 4 are set to O.

csenca [encodernum resolution]

Configures one of the two available quadrature decoders to the axis specified by “a” or shows the
current decoder configuration of this axis. When no additional parameters are given, the current axis decoder
configuration consisting of used decoder number and resolution is returned. When this axis does not make use
of an encoder, “of £” is given back.

To enable and configure a decoder for this axis, the decoder number “encodernum” in range 0..1 and its
resolution (in unit “factor” between encoder pulses and the related number of increments * 100000) has to be
specified.

To disable an encoder input for an axis, the number of decoder to be disabled and a resolution of -1 has to be
specified.

When decoder O is used, input lines 0 and 1 are required for encoder signals and no longer can be used as
limit/reference switch/tigger inputs.

When decoder 1is used, input lines 2 and 3 are required for encoder signals and no longer can be used as
limit/reference switch/trigger inputs.

Examples:

csenc3 0 1235000 - enable encoder O (input bits 0 and 1) for axis 3, one increment of motor is equal to
1.235 encoder pulses for this axis

csenc0 1 -1 -disableencoder 1, input bits 2 and 3 are available for use as stop or reference switch
afterwards; here axis specifier “0” does not matter since there will be no longer an assignment of the disabled
encoder to any axis

csena ab

Sets the enable mode and state for digital outputs “Enable3” and “Enable?7”. Here a and b are single-
digit numbers which define the state for “Enable3™-output (a) and “Enable7"-ouput (b). Both always have to be
set together and can have following values:
0 - operate Enable3 and Enable7 outputs in “enable” mode and set the related output to LOW; in this mode all
motion commands for the fourth axis are dropped
1 - operate Enable3 and Enable7 outputs in “enable” mode and set the related output to HIGH; in this mode all
motion commands for the fourth axis are dropped
2 - operate Enable3 and Enable7 outputs in “drive axis” mode for the fourth axis and disable the “enable”
functionality; this value always has to be set for bot, a and b, it can not be defined for one of them only
Examples:
csena 22 - turn off the “enable™functionality and use the related outputs to drive the fourth axis
csena 10 -turn off the fourth axis, set output “Enable3” to HIGH and “Enable7” to LOW
csena 01 - turn off the fourth axis, set output “Enable3” to LOW and “Enable7” to HIGH
This command requires firmware version 28 or higher.

cginp
Shows the current state of digital inputs. When decoder O or 1 is used, state of input bitsOand 1 or 2
and 3 are undefined and do not reflect their current state.

32

csout outbits

Set the bit pattern specified by “outputs” at the digital outputs for step and direction. Here the digital
outputs are set and cleared according to the given bit pattern. HANDLE WITH CARE: This command is
executed immediately and independent from any other (motion) command. Dependent on what bit pattern is
set with this command, it can invert motion direction and/or cause a single step. So this command should never
be used when any other operation is in progress or only in case E1701M is used as 10-board and without motor
control functionality! Elsewhere after setting some outputs it may be necessary to perform a new reference run
in order to get axis position and internal position counter working synchronously.

Example: csout 12 -set the step and direction output of axis 1 to HIGH while outputs of all other axes go to
LOW.

cecho mode

Setting amode of O disables echoing of data sent to the controller. In this case only responses are sent
back. This mode is useful when accessing controller out of an application.
With mode 1 echoing is enabled, this is useful for manual operations where user types commands and likes to
get a key press feedback. So when accessing controller via serial interface out of an application first command
sent to it should be echo 0 while dropping all received data until an “OK : ” is detected.

cglog

Get next line of buffered log information. As long as there are some more log data available, this call
returns the next log message and removes it from internal buffer. In case there are no more log messages
available an error message is returned. To get all current log messages this command has to be used repeatedly.
When the command is never called during operation the internal log buffer is filled continuously. As soon as
there is no more space left in log buffer, all following log messages are dropped. Now when cglogis called it
will of course not be able to show the dropped messages. In this case it is important to keep in mind that there
can be a gap in log buffer, new log messages are appended as soon as old ones are removed by calling this
command.

33

APPENDIX A - IDC connector pin numbering

Pin numbering of the IDC connectors (according to pinout-tables shown in hardware description sections
above) can be seen in below image:

The first pin is marked by a small arrow in connector. Second pin is below of it, counting continues column-wise.

34

APPENDIX B - Board dimensions

Board dimension drawings all values are given in unit mm.

Connectors, bottom view:

Connectors, top view:

Dimensions, top view:

47,75

40

0.
-

44,58
41,66

31,75

2461 7 10 88883338809380000000000 34,61
00000000000000000000000 ®)
-
37,97
Ethernet c
21,72
14,6
ext. _)
Power O
546 \ O 00000000000000000000000 D
| 00000000000000000000000 |
0 0
Sl e
2,54
C D
Interface connector dimensions 34 mm 10,3 mm
o143 O 933999900800000000000000
. 00000000000000000000000 @) 2896
3
2
218\ 00000000000000000000000 6:35
. 0 00000000000000000000000 0
| T
14,6 80,65
86,36
934

35

Index

C

caccea 26
camoda 26
ccposa 28
ccspda 28
cdecea 27
cdmoda 27
cecho 33
cginp 32
cglog 33
chlima 27
cllima 27
cmabsa 29
cmrefa 31
cmrela 29
cmspda 28
controller log data 15
crtrga 30
csdeca 27
csdlya 31
csena 32
csenca 32
cslima 28
csout 33
csposa 29
cstcda 28
cstopa 29
cstrga 30
cststa 29
csynca 30
D

dimension drawing 35
dimensions 35
E

E1701M_ACCEL_MODE_EXP 17
E1701M_ACCEL_MODE_LIN 17
E1701M_ACCEL_MODE_SSHAPE 17
E1701M_AXIS_STATE_CONDSTOP 20,24
E1701M_AXIS_STATE_MOVING 24
E1701M_AXIS_STATE_REFERENCING 24
E1701M_AXIS_STATE_SETPOS 21,24
E1701M _close() 16
E1701M_DECEL_MODE_EXP 17
E1701M_DECEL_MODE_LIN 17
E1701M_DECEL_MODE_SSHAPE 17
E1701M_delay() 23
E1701M_ENABLE_HIGH 19
E1701M_ENABLE_LOW 19
E1701M_ENABLE_OFF 19
E1701M_enable() 19
E1701M_ERROR 26
E1701M_ERROR_FILEOPEN 26
E1701M_ERROR_FILEWRITE 26
E1701M_ERROR_INVALID_CARD 25

36

E1701M_ERROR_INVALID_DATA

26

E1701M_ERROR_NO_CONNECTION 26
E1701M_ERROR_NO_MEMORY 26
E1701M_ERROR_TRANSMISSION 26
E1701M_ERROR_UNKNOWN_BOARD 26
E1701M_ERROR_UNKNOWN_FW 26
E1701M_get_axis_pos() 24
E1701M_get_axis_speed() 24
E1701M_get_axis_state() 24
E1701M_get_inputs() 25
E1701M_get_version() 25
E1701M_move_abs() 18
E1701M_move_rel() 18
E1701M_open_connection() 16
E1701M_reference() 20
E1701M_REFSTEP_1_ENTER_N 20
E1701M_REFSTEP_1_ENTER_P 20
E1701M_REFSTEP_2_ENTER_N 20
E1701M_REFSTEP_2_ENTER_P 20
E1701M_REFSTEP_2_LEAVE_N 20
E1701M_REFSTEP_2_LEAVE_P 20
E1701M_REFSTEP_3_ENTER_N 20
E1701M_REFSTEP_3_ENTER_P 20
E1701M_REFSTEP_3_LEAVE_N 20
E1701M_REFSTEP_3_LEAVE_P 20
E1701M_REFSTEP_4_ENTER_N 20
E1701M_REFSTEP_4_ENTER_P 20
E1701M_REFSTEP_4_LEAVE_N 21
E1701M_REFSTEP_4_LEAVE_P 21
E1701M_REFSTEP_INV_SWITCH 21
E1701M_release_trigger_point() 22
E1701M_set_accels() 16
E1701M_set_connection() 15
E1701M_set_enc() 23
E1701M_set_limits() 17
E1701M_set_logfile() 15
E1701M_set_outputs() 25
E1701M_set_password() 15
E1701M_set_pos() 21
E1701M_set_speed() 18
E1701M_set_stopcond() 19
E1701M_set_sync_point() 22
E1701M_set_trigger_point() 22
E1701M_stop() 23
F

Firmware 11
|

|O-board 6,13,25,33

37

	1 Copyright
	2 Safety
	3 Overview
	3.1 Features

	4 Position Within The System
	5 Board And Connectors
	5.1 Ethernet
	5.2 USB
	5.3 Power
	5.4 Power LED
	5.5 User LEDs
	5.6 Reset-Button
	5.7 Micro-SD-Card
	5.7.1 Firmware Update

	5.8 Digi I/O
	5.9 Opto-Configuration
	5.10 Input State LEDs

	6 Programming Interfaces
	6.1 E1701M Binary API Functions
	6.1.1 E1701M Binary API Error Codes

	6.2 E1701M ASCII Commands

	APPENDIX A – IDC connector pin numbering
	APPENDIX B – Board dimensions

